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ABSTRACT

In this study, the relationship between the limit of predictability and initial error was investigated using
two simple chaotic systems: the Lorenz model, which possesses a single characteristic time scale, and the
coupled Lorenz model, which possesses two different characteristic time scales. The limit of predictability
is defined here as the time at which the error reaches 95% of its saturation level; nonlinear behaviors of
the error growth are therefore involved in the definition of the limit of predictability. Our results show that
the logarithmic function performs well in describing the relationship between the limit of predictability and
initial error in both models, although the coefficients in the logarithmic function were not constant across
the examined range of initial errors.

Compared with the Lorenz model, in the coupled Lorenz model—in which the slow dynamics and the fast
dynamics interact with each other—there is a more complex relationship between the limit of predictability
and initial error. The limit of predictability of the Lorenz model is unbounded as the initial error becomes
infinitesimally small; therefore, the limit of predictability of the Lorenz model may be extended by reducing
the amplitude of the initial error. In contrast, if there exists a fixed initial error in the fast dynamics of
the coupled Lorenz model, the slow dynamics has an intrinsic finite limit of predictability that cannot be
extended by reducing the amplitude of the initial error in the slow dynamics, and vice versa. The findings
reported here reveal the possible existence of an intrinsic finite limit of predictability in a coupled system
that possesses many scales of time or motion.
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1. Introduction

Chaotic systems are characterized by a “sensitive
dependence on initial conditions” (Eckmann and Ru-
elle, 1985), such that the predictability of future states
is often severely limited by the chaotic dynamics of
the system. In the pioneering work of Lorenz (1969a),
geophysical systems are classified into three categories
according to the general behavior of the limit of pre-
dictability. Systems in the first category have an in-
finite limit of predictability no matter how large the
initial error. Systems in the second category have a fi-
nite limit, but this limit may be increased indefinitely
by reducing the size of the initial error. Systems in

the third category have an intrinsic finite limit of pre-
dictability that cannot be lengthened by reducing the
amplitude of the initial error. By definition, chaotic
systems fall into one of the latter two categories. It
has long been assumed that deterministic fluid systems
that possess many scales of motion, such as the at-
mosphere, have an intrinsic finite limit of predictabil-
ity due to the cascade of prediction errors from small
to large scales (Lorenz, 1969a; Leith, 1971; Leith and
Kraichnan, 1972; Metais and Lesieur, 1986).

The sensitive dependence of chaotic systems on ini-
tial conditions indicates a close relationship between
the limit of predictability and initial error. Lorenz
(1969a) described the general behavior of the change
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in the limit of predictability as a function of initial er-
ror, but he did not provide a detailed analysis of the
relationship between the limit of predictability and ini-
tial error.

In studies of nonlinear dynamical systems, Lya-
punov exponents measure the average exponential
rates of divergence or convergence of nearby orbits on
a strange attractor and thus quantify the average pre-
dictability of a chaotic system (Oseledec, 1968). By
definition, if the initial perturbation is of the size E0

and the accepted error tolerance ∆ remains small, then
the maximal Lyapunov exponent λ1 of a chaotic sys-
tem determines a logarithmic relationship between the
predictability time TP and E0 (Eckmann and Ruelle,
1985; Wolf et al., 1985; Lorenz, 1996):

Tp ∼ 1
λ1

ln
(

∆
E0

)
, (1)

so that TP decreases at a rate of 1/λ1 with increas-
ing lnE0. However, for the predictability time Eq. (1)
holds only for infinitesimal perturbations and in non-
intermittent systems (Boffetta et al., 1998; Ding et
al., 2006; Ding and Li, 2007; Li and Ding, 2011a). In
addition, Boffetta et al. (1998) showed that the max-
imal Lyapunov exponent is not sufficient to estimate
the predictability time for systems with different char-
acteristic time scales. Consequently, Eq. (1) performs
poorly in describing the relationship between the limit
of predictability and initial error in the case of large
initial errors or in systems with different characteristic
time scales.

The potential existence of an inherent limit of at-
mospheric predictability has been a question of great
concern in recent decades. The predictability of
weather has long been recognized to be inherently lim-
ited because of the chaotic nature of the atmosphere
(Lorenz, 1963, 1965; Chou, 1989; Simmons et al., 1995;
Mu et al., 2002; Zhou, 2005; Palmer, 2006). Sev-
eral studies have examined the relationship between
the limit of predictability (the time taken for the ini-
tial error to reach the climate noise level) and ini-
tial error for the atmosphere. Chen (1989) and Toth
(1991) assumed a linear relationship between the limit
of predictability and initial error. They concluded
from this linear relationship that the limit of pre-
dictability for an infinitesimal initial error in the ob-
served atmosphere is ∼2 weeks. Nohara and Tanaka
(2001) later showed that the relationship between the
limit of predictability and initial error in a barotropic
model of the atmosphere is logarithmic rather than
linear, implying that the predictability for the model
atmosphere is theoretically unbounded. Nohara and
Tanaka (2001) then applied the logarithmic relation-
ship from the barotropic model to the observed at-

mosphere. They concluded that the predictability of
the barotropic component of the atmosphere could be
extended by reducing the initial error in the vertical
mean component of the atmosphere.

Observed atmospheric data contain almost all of
the real information regarding the day-to-day move-
ment and evolution of weather systems. It is appro-
priate to investigate the real atmospheric predictabil-
ity based on observational data. Estimation of atmo-
spheric predictability based on circulation analogues
has been discussed in previous studies (Lorenz, 1969b;
van den Dool, 1994). However, owing to the rela-
tively short observational record of the atmosphere,
it is difficult to find good analog pairs to investigate
the error growth for a sufficiently small initial error
(Lorenz, 1969b; van den Dool, 1994). According to
van den Dool (1994), it would take a data library
on the order of 1030 years to find good global ana-
logues over a large region such as the Northern Hemi-
sphere (where the number of spatial degrees of free-
dom is large). Obviously, it is impossible to find good
global analogues with current libraries of historical at-
mospheric data that span 10 to 100 years. In addition,
numerical models in use today provide imperfect sim-
ulations of the observed atmosphere, and model de-
ficiencies strongly influence estimates of atmospheric
predictability. Therefore, this study does not attempt
to determine whether the relationship between the
limit of predictability and initial error is linear or log-
arithmic for the observed atmosphere. Instead, we
investigate the relationship between the limit of pre-
dictability and initial error in two simple chaotic sys-
tems: the Lorenz model that possesses a single char-
acteristic time scale, and the coupled Lorenz model
that possesses two different characteristic time scales.
By comparing and contrasting how the limit of pre-
dictability varies as a function of initial errors in these
two models, we tested whether a coupled model with
different time scales have an intrinsic finite limit of pre-
dictability that does not depend on errors in the initial
conditions. The results of this study revealed the in-
fluences of interactions among different time scales on
the limit of predictability in a coupled model that pos-
sesses many scales of time or motion.

In the present study, the limit of predictability is
defined as the time at which the error reaches 95%
of its saturation level. Because error growth is non-
linear as the error reaches a large value and gradu-
ally approaches saturation, the nonlinear behaviors of
the error growth are involved in the definition of the
limit of predictability (Dalcher and Kalnay, 1987; Kr-
ishnamurthy, 1993; Li and Ding, 2011a). The limits of
predictability for initial errors of various magnitudes
(from small to large) can therefore be determined for
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both the uncoupled and coupled Lorenz models. Equa-
tion (1) can be extended to account for large initial er-
rors and coupled systems with different characteristic
time scales.

Notably, the present study is an extension of our
previous research (Li and Ding, 2011b) in which we
presented a linear relationship between the limit of
predictability and the logarithm of sufficiently small
initial errors for the Lorenz model. The behaviors of
the limit of predictability for larger initial errors and
for the coupled model were not addressed in Li and
Ding (2011b). The remainder of this paper is arranged
as follows. In section 2, the limit of predictability for
the Lorenz model is presented as a function of the ini-
tial error. In section 3, the limits of predictability for
the slow dynamics and fast dynamics in the coupled
Lorenz model are presented as functions of the initial
errors. Concluding remarks are given in section 4.

2. The Lorenz model with a single time scale

The first example is given by the Lorenz model
(Lorenz, 1963):





dX1

dt
= −σX1 + σX2 ,

dX2

dt
= rX1 −X2 −X1X3 ,

dX3

dt
= X1X2 − bX3 ,

(2)

where σ, r, and b are parameters that represent the
Prandtl number, the Rayleigh number, and a geomet-
ric factor, respectively. The state variables, X1, X2,
and X3 represent measures of fluid velocity and the
spatial temperature distribution in the fluid layer un-
der gravity. The parameters have the values σ=10,
r=28, and b=8/3, for which the well-known “butter-
fly” attractor exists. The maximal Lyapunov expo-
nent of the Lorenz model with these parameters is
λ1=0.905 (Shimada and Nagashima, 1979; Benettin et
al., 1980). A long integration using the fourth-order
Runge–Kutta method with a time stepsize h=0.01 was
performed to obtain 8×104 points within the attrac-
tor, which represent an ensemble of initial unperturbed
states. A set of random errors, which have a Gaus-
sian distribution with zero mean and magnitude E0,
were superimposed on the unperturbed states to form
an ensemble of perturbed states. The magnitude E0

of the individual error is simply the root-mean-square
distance (RMSD) between the perturbed and the un-
perturbed states in the three-dimensional phase space.
An ensemble of 8×104 errors at each time step was ob-
tained by integrating solutions of the Lorenz model

Fig. 1. Average growth of errors with initial magnitude
E0 = 10−4 in the Lorenz model. The dashed lines in-
dicate the exponential growth of errors with the growth
rate λ1=0.905. λ1 is the maximal Lyapunov exponent of
the Lorenz model.

that originated from the unperturbed and perturbed
initial states. The ensemble average of the magnitude
of the errors was defined as the average error E. The
ensemble average was taken as the geometric mean.

Figure 1 presents the ensemble average growth of
errors with initial magnitude E0 = 10−4. At the early
stage, the error growth was exponential, with a growth
rate consistent with the maximal Lyapunov exponent
λ1, indicating that linear error dynamics are applicable
during this phase. When the magnitude of the error
was nearly 100.2, the error growth started to deviate
from the exponential growth. The error growth then
entered a nonlinear phase with a steadily decreasing
growth rate, finally reaching a saturation value. For
large initial errors, such as E0 = 10, the exponential
growth phase was absent, and the error growth en-
tered directly into the nonlinear phase, with a growth
rate less than λ1 (not shown). Once the error growth
reached the saturation level, almost all information on
initial states was lost, and prediction became mean-
ingless. The limit of predictability Tp is defined as the
time at which the error reaches 95% of its saturation
level. We found that Tp=23.04 for the Lorenz model
with E0 = 10−4.

Figure 2 shows the limits of predictability Tp as
a function of lg E0. Tp decreased approximately lin-
early with increasing lg E0 for E0<100.2; however, Tp

decreased more quickly than linearly with increasing
lg E0 for E0 > 100.2. As discussed previously regard-
ing Fig. 1, the tangent linear approximation of error
growth was no longer valid, and the error growth en-
tered a nonlinear phase when the error growth reached
nearly 100.2. Therefore, we conclude that the relation-
ship between the limit of predictability and initial error
for small E0 (< 100.2) may be different from that for
large E0 (> 100.2).
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Fig. 2. Scatter diagram of the limit of predictability TP

versus lg E0 in the Lorenz model. The red line is the
curve fit by regression of the data shown by the solid
circles using Eq. (7) for E0<100.2. The blue line is the
curve fit by regression of the data shown by the solid
circles using Eq. (7) for E0 > 100.2.

Lorenz (1982) introduced a crude formula to de-
scribe the average growth of error E in chaotic sys-
tems:

dE

dt
= αE − α

E∞
E2 , (3)

where E∞ denotes the saturation value for E and α
is an exponential growth rate for small error. This er-
ror equation considers both an exponential growth of
small errors (with a growth rate of α) and the satura-
tion effect of large errors at sufficiently long times. If
E0 is the initial error at time t0, then the error E at a
later time t is given by Store and Royer (1993):

E =
E∞

1 +
(

E∞
E0

− 1
)

e−αt

. (4)

If the limit of predictability TP is defined as the time
taken for E to reach a critical value El below E∞ (for
example, 95% E∞ as taken in this study), then TP

may be written using E0:

TP = − 1
α

{
ln

[
E0

E∞ − E0

]
+ ln

[
E∞ − El

El

]}
. (5)

Then Eq. (5) may be changed to the following form:

TP = − c

α

{
lg

[
E0

E∞ − E0

]
+ lg

[
E∞ − El

El

]}
, (6)

where c is a constant equal to 2.303. According to
Eq. (6), the relationship between TP and lg E0 is linear
when E0 is sufficiently small, and TP decreases more
and more quickly as E0 gradually approaches E∞.

For various E0, we computed the limit of pre-
dictability TP according to Eq. (6) with α = λ1 and

Fig. 3. (a) Scatter diagram of the limit of predictabil-
ity shown in Fig. 2 (denoted TP0; closed circles) and the
limit of predictability obtained using the empirical for-
mula given by Eq. (6) with α=0.905 and El=95%E∞ (de-
noted TP1; open circles) versus lg E0 in the Lorenz model.
(b) Scatter diagram of the difference between TP0 and
TP1 versus lg E0.

El=95% E∞. The limits of predictability TP accord-
ing to Eq. (6) (denoted TP1) and as shown in Fig. 2
(denoted TP0), are presented in Fig. 3a. For E0<100.2,
TP1 decreased approximately linearly with increasing
lg E0, at a rate similar to that of TP0; however, there
was a significant difference between TP0 and TP1 that
remained almost constant (Fig. 3b). The reason for
this constant difference between TP0 and TP1 is that al-
though the empirical error E according to Eq. (4) de-
scribes the exponential growth phase quite well, it fails
to describe the nonlinear phase of the error growth.
The empirical error saturated more quickly than the
actual error (Fig. 4), thereby resulting in a smaller
limit of predictability. The difference between the em-
pirical and actual limits of predictability was roughly
constant for small initial errors. Accordingly, the em-
pirical formula given by Eq. (6) seems a good approx-
imation for the limit of predictability for small initial
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Fig. 4. The dashed curve shows the error growth ac-
cording to the empirical formula given by Eq. (4) with
α=0.905 and E0 = 10−4. The solid curve shows the av-
erage error growth with E0 = 10−4 as shown in Fig. 1.
To highlight the difference between the two curves, the
error E is used instead of lg E as the y coordinate.

errors, provided that a constant is added to the right
side of the equation.

For E0>100.2, the decreasing rate of TP1 with lg E0

was less than that of TP0, so that the difference be-
tween TP0 and TP1 gradually decreased with increasing
lg E0 (Fig. 3b). In fact, a better fit to the curve of TP0

for E0>100.2 was obtained with Eq. (6) by choosing
α=0.33 rather than α = λ1 [see Eq. (7)]. As shown
in Eq. (7), the exponential growth rate of small E0

(< 100.2) was close to the maximal Lyapunov expo-
nent λ1= 0.905, while that of large E0 (> 100.2) was
significantly less than λ1. Similar results were found
by Krishnamurthy (1993), who pointed out that the
growth rate of large initial errors cannot be interpreted
in terms of the Lyapunov exponents in the Lorenz’s
28-variable model.

Based on our results, the relationship between the
limit of predictability and initial error in the Lorenz
model can result from the logarithmic regression using
Eq. (6) for small E0 (< 100.2) and large E0 (> 100.2),
respectively,





TP = − c

0.94
lg

E0

E∞ − E0
+ 10.29 ,

if E0 < 100.2

TP = − c

0.33
lg

E0

E∞ − E0
+ 5.93 ,

if 100.2 6 E0 < E∞

(7)

where c=2.303 and E∞=15.69. The fitting curve us-
ing Eq. (7) is shown in Fig. 2. According to Eq. (7), TP

can be extended by ∼2.45 when E0 decreases to E0/10
for sufficiently small E0. The logarithmic relationship

implies that TP is unbounded as E0 approaches 0. We
can extend the limit of predictability as long as we can
reduce the initial error.

3. The coupled Lorenz model with two differ-
ent time scales

The example presented in section 2 is the Lorenz
model with a single characteristic time scale. Next,
we discuss the relationship between the limit of pre-
dictability and initial error in the coupled Lorenz
model with different characteristic time scales. The
coupled Lorenz model was obtained by coupling two
Lorenz models, with the first representing the slow dy-
namics and the second the fast dynamics (Boffetta et
al., 1998):





dX
(s)
1

dt
= σ(X(s)

2 −X
(s)
1 ) ,

dX
(s)
2

dt
=

(
−X

(s)
1 X

(s)
3 + rsX

(s)
1 −X

(s)
2

)
−

εsX
(f)
1 X

(f)
2 ,

dX
(s)
3

dt
= X

(s)
1 X

(s)
2 − bX

(s)
3 ,

dX
(f)
1

dt
= cσ(X(f)

2 −X
(f)
1 ) ,

dX
(f)
2

dt
= c(−X

(f)
1 X

(f)
3 + rfX

(f)
1 −X

(f)
2 )+

εfX
(f)
1 X

(s)
2 ,

dX
(f)
3

dt
= c(X(f)

1 X
(f)
2 − bX

(f)
3 ) ,

(8)

where the superscripts (s) and (f) denote the slow dy-
namics and the fast dynamics, respectively. In the
coupled Lorenz model, the parameters have the values
σ=10, b=8/3, and c=10, the last implying that the
fast dynamics tends to fluctuate 10 times as quickly
as the slow dynamics. The Rayleigh numbers of the
slow dynamics and the fast dynamics were taken dif-
ferently, rs=28 and rf=45 for generality. When the
coupling coefficients εs and εf equal 0, the uncoupled
fast and slow Lorenz models display chaotic behavior
with the maximal Lyapunov exponents λ

(f)
1 =12.17 and

λ
(s)
1 =0.905, respectively. For εs = 10−2 and εf=10,

Boffetta et al. (1998) showed that the coupled Lorenz
model has the maximal Lyapunov exponent λ1=11.5,
which is close to λ

(f)
1 in the uncoupled case. This re-

sult indicates that the maximal Lyapunov exponent in
a multi-scale system is mainly determined by the error
growth of the fast dynamics.

In this study, we computed the error growth for the
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coupled Lorenz model with the coupling coefficients
as prescribed in Boffetta et al. (1998): εs = 10−2 and
εf=10. We obtained the solutions originating from the
unperturbed and perturbed initial states by integrat-
ing the coupled Lorenz model using a time-step size of
h=0.005. The perturbed initial states were subjected
to random errors with magnitudes E

(s)
0 and E

(f)
0 on

the unperturbed initial states of the slow dynamics
and the fast dynamics, respectively. The errors of the
slow dynamics and the fast dynamics (denoted as E(s)

and E(f), respectively) were computed using the root-
mean-square error (RMSE) between the unperturbed
and perturbed initial states.

According to Boffetta et al. (1998, see their Fig. 2),
when E

(s)
0 and E

(f)
0 is infinitesimally small, the fast

dynamics in the coupled Lorenz model plays a domi-
nant role in the rapid growth of E(s); both E(f) and
E(s) begin to grow at an exponential rate close to the
maximal Lyapunov exponent λ

(f)
1 of the fast dynam-

ics. E(f) quickly reaches saturation, but E(s) continues
to grow at a slower quasi-exponential rate comparable
to its maximal Lyapunov exponent λ

(s)
1 . In this latter

case, the slow dynamics in the coupled Lorenz model
plays a dominant role in the growth of E(s), while the
fast dynamics is less relevant. The transition from
fast growth to slow growth of E(s) occurs when E(s)

grows more than 10−2, which roughly corresponds to
the magnitude of the coupling εs. When the magni-
tude of E(s) is nearly 100.2, the growth of E(s) enters
a nonlinear phase with a steadily decreasing growth
rate. Finally E(s) approaches its own saturation level,
which is slightly lower than that of E(f). Therefore,
10−2 and 100.2 are critical values of E(s) that sepa-
rate different phases of the error growth of the slow
dynamics.

3.1 Predictability limit of the slow dynamics

We first investigated the influences of the coupling
on the relationship between the predictability limit of
the slow dynamics and its initial error E

(s)
0 . Here we

studied two different cases. In the first case, no ini-
tial error existed in the fast dynamics (i.e., E

(f)
0 =0).

In the second case, a fixed initial error with magni-
tude E

(f)
0 =10−8 existed in the fast dynamics. In both

cases, E
(s)
0 varied from 10−8 to 101.1 (slightly below

the saturation value of E(s)).
For the first case (E(f)

0 =0), Fig. 5 shows the error
growth of the slow dynamics for E

(s)
0 of various mag-

nitudes, averaged over 5×104 initial states. For small
E

(s)
0 (< 10−2), the growth of E(s) displayed two dis-

tinctly different phases: the first phase characterized
the fast growth, while the latter phase characterized
the slow growth, consistent with Boffetta et al. (1998).

Fig. 5. Average error growth of the slow dynamics as a
function of time τ and E

(s)
0 in the coupled Lorenz model

with E
(f)
0 =0. From below to above, the curves corre-

spond to E
(s)
0 = 10−8, 10−7, 10−6, 10−5, 10−4, 10−3,

10−2, 10−1, 100, and 10, respectively.

For large E
(s)
0 (> 10−2), the fast-growth phase was ab-

sent and only the slow-growth phase was evident. The
predictability limit of the slow dynamics (denoted as
T

(s)
P ) was defined as the time at which E(s) reached

95% of its saturation level.
Figure 6a shows the dependence of T

(s)
P on lg E

(s)
0 .

It is obvious that the decreasing rates of T
(s)
P with

increasing lg E
(s)
0 are different for different intervals of

E
(s)
0 . For E

(s)
0 <10−2, T

(s)
P showed a slow, almost linear

decrease with increasing lg E
(s)
0 ; for 10−26E

(s)
0 <100.2,

T
(s)
P showed a quick, almost linear decrease with in-

creasing lg E
(s)
0 ; for 100.2<E

(s)
0 <E

(s)
∞ (where E

(s)
∞ is

the saturation value of E(s)), T
(s)
P decreased more and

more quickly with increasing lg E
(s)
0 . The regression

between T
(s)
P and E

(s)
0 using Eq. (6) yielded a piece-

wise function for different intervals of E
(s)
0 :





T
(s)
P = − c

11.92
lg

E
(s)
0

E
(s)
∞ − E

(s)
0

+ 16.61 ,

if E
(s)
0 < 10−2

T
(s)
P = − c

1.07
lg

E
(s)
0

E
(s)
∞ − E

(s)
0

+ 10.42 ,

if 10−2 6 E
(s)
0 < 100.2

T
(s)
P = − c

0.31
lg

E
(s)
0

E
(s)
∞ − E

(s)
0

+ 5.76 ,

if 100.2 6 E
(s)
0 < E

(s)
∞

(9)

where c=2.303 and E
(s)
∞ =15.46. The fitting curve us-

ing Eq. (9) is shown in Fig. 6a. Using Eq. (9), the value
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Fig. 6. (a) Scatter diagram of the limit of predictability

of the slow dynamics T
(s)
P versus lg E

(s)
0 in the coupled

Lorenz model with E
(f)
0 =0. The red, blue, and green

lines are the curves fitted by the regression of the data
shown by the solid circles using Eq. (9) for E

(s)
0 < 10−2,

10−26E
(s)
0 <100.2, and 100.2 6 E

(s)
0 <E

(s)
∞ , respectively.

(b) Open circles correspond to the limits of predictabil-

ity of the coupled slow dynamics as a function of lg E
(s)
0 ,

while closed circles correspond to those of the uncoupled
slow dynamics.

of α [which corresponded to the exponential growth
rate of error in Eq. (6)] was close to λ

(f)
1 for E

(s)
0 <10−2,

while it was close to λ
(s)
1 for 10−2 6 E

(s)
0 <100.2.

A comparison of Eq. (7) and Eq. (9) showed
that the changes of T

(s)
P with E

(s)
0 in the coupled

Lorenz model are similar to those in the uncoupled
Lorenz model for E

(s)
0 >10−2 (Fig. 6b). However, for

E
(s)
0 <10−2, the changes of T

(s)
P with E

(s)
0 were dom-

inated by the fast dynamics, leading to a slower in-
crease of T

(s)
P with decreasing lg E

(s)
0 . As E

(s)
0 became

infinitesimally small, the reduction in the predictabil-
ity of the slow dynamics due to the coupling with the
fast dynamics became more pronounced. According
to Eq. (9), T

(s)
P was unbounded as E

(s)
0 approaches 0;

however, T
(s)
P is only extended by ∼0.19 when E

(s)
0

decreased to E
(s)
0 /10 for sufficiently small E

(s)
0 . This

result indicates that it is difficult to extend the pre-
dictability limit of the slow dynamics in the coupled
Lorenz model by reducing the initial error E

(s)
0 .

For the second case (E(f)
0 =10−5), the average error-

growth curves of the slow dynamics as a function of
time τ and E

(s)
0 are shown in Fig. 7. A comparison of

Fig. 5 and Fig. 7 shows that the error growth curves in
the second case mainly differed from those in the first
case for E

(s)
0 610−5. With E

(f)
0 =10−5, the curves of

E(s) with E
(s)
0 610−5 tended to overlay each other as

τ increases. The curves began to separate as E
(s)
0 ex-

ceeded 10−5, and the time that E(s) reached saturation
shortens as E

(s)
0 increases. Consistent with these er-

ror growth of the slow dynamics, T
(s)
P remained almost

constant with increasing lg E
(s)
0 for E

(s)
0 610−5 (Fig. 8).

For E
(s)
0 >10−5, T

(s)
P gradually decreased with increas-

ing lg E
(s)
0 , although the rate of decrease differed for

different intervals of E
(s)
0 . The regression between T

(s)
P

and E
(s)
0 using Eq. (6) yields





T
(s)
P = 17.69, if E

(s)
0 6 10−5 ,

T
(s)
P = − c

11.92
lg

E
(s)
0

E
(s)
∞ − E

(s)
0

+ 16.62 ,

if 10−5 < E
(s)
0 < 10−2

T
(s)
P = − c

1.11
lg

E
(s)
0

E
(s)
∞ − E

(s)
0

+ 10.54 ,

if 10−2 6 E
(s)
0 < 100.2

T
(s)
P = − c

0.33
lg

E
(s)
0

E
(s)
∞ − E

(s)
0

+ 5.62 ,

if 100.2 6 E
(s)
0 < E

(s)
∞

(10)

where c=2.303 and E
(s)
∞ =15.46. The fitting curve us-

ing Eq. (10) is shown in Fig. 8. According to Eq. (10),
if the fast dynamics has a small initial error with
magnitude equal to 10−5, the predictability of the
slow dynamics is limited to ∼17.69. In this case,
the slow dynamics has an intrinsic finite limit of pre-
dictability, which could not be extended by reduc-
ing the amplitude of initial errors of the slow dy-
namics. When E

(s)
0 >10−5, the changes of the expo-

nential growth rate α with E
(s)
0 using Eq. (10) were

similar to those using Eq. (9), with the value close
to λ

(f)
1 for 10−5<E

(s)
0 <10−2 and close to λ

(s)
1 for

10−26E
(s)
0 6100.2.
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Fig. 7. Same as Fig. 5, but with E
(f)
0 = 10−5 in the cou-

pled Lorenz model.

Fig. 8. Scatter diagram of the predictability limit of the
slow dynamics T

(s)
P versus lg E

(s)
0 in the coupled Lorenz

model with E
(f)
0 = 10−5. The red, dark blue, green, and

light blue lines are the curves fitted by the regression
of the data shown by the solid circles using Eq. (10) for

E
(s)
0 610−5, 10−5<E

(s)
0 <10−2, 10−26E

(s)
0 < 100.2, and

100.2 6 E
(s)
0 <E

(s)
∞ , respectively.

The relationship between T
(s)
P and E

(s)
0 described

by Eq. (10) holds for any given E
(f)
0 with a value

< 10−2, but with a different upper bound of the pre-
dictability limit. For E

(f)
0 >10−2, however, the maxi-

mal Lyapunov exponent λ
(f)
1 of the fast dynamics is no

longer relevant to the relationship between T
(s)
P and

E
(s)
0 . In this case, the phase during which T

(s)
P de-

creased with increasing lg E
(s)
0 at a rate close to c/λ

(f)
1

was absent (not shown).

3.2 Predictability limit of the fast dynamics

We next focused on the relationship between the
predictability limit of the coupled fast dynamics and

Fig. 9. Average error growth of the fast dynamics as a
function of time τ and E

(f)
0 in the coupled Lorenz model

with E
(s)
0 =0. From below to above, the curves corre-

spond to E
(f)
0 =10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2,

10−1, 100, and 10, respectively.

its initial error E
(f)
0 . Similar to the slow dynamics,

we considered two cases with different magnitudes for
E

(s)
0 . In these two cases, the initial errors of the slow

dynamics were fixed at E
(s)
0 =0 and E

(s)
0 = 10−5, re-

spectively, and we investigated the dependence of the
error growth and predictability of the fast dynamics on
E

(f)
0 . We varied E

(f)
0 between 10−8 and 101.3 (slightly

below the saturation value of E(f)).
For the first case (E(s)

0 =0), the average error
growth of the fast dynamics is shown for E

(f)
0 of vari-

ous magnitudes in Fig. 9. For small E
(f)
0 , E(f) showed a

quick increase in the early phase, after which it showed
a slow increase until saturation. This result indicates
that the fast dynamics play an important role in de-
termining the initial error growth of E(f), while the
error growth is more strongly influenced by the slow
dynamics as E(f) increases. Compared with the error
growth of the uncoupled fast dynamics (not shown),
the coupling with the slow dynamics led to an exten-
sion of the time before E(f) reached saturation. As
a result, the predictability limit T

(f)
P of the coupled

fast dynamics was significantly greater than that of
the uncoupled fast dynamics for all investigated mag-
nitudes of E

(f)
0 (Fig. 10b). The predictability limit of

the uncoupled fast dynamics showed an almost lin-
ear decrease with increasing lg E

(f)
0 for E

(f)
0 <100.5 and

a quicker than linear decrease with increasing lg E
(f)
0

for 100.5 6 E
(f)
0 <E

(f)
∞ . By contrast, the predictability

limit of the coupled fast dynamics showed an almost
linear decrease with increasing lg E

(f)
0 for E

(f)
0 <E

(f)
∞ .

When E
(f)
0 was close to its saturation level E

(f)
∞ , the

predictability limit of the uncoupled fast dynamics ap-
proached 0; however, the predictability limit of the
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Fig. 10. (a) Scatter diagram of the limit of predictabil-

ity of the fast dynamics T
(f)
P versus lg E

(f)
0 in the coupled

Lorenz model with E
(s)
0 =0. The red line is the curve

fitted by the regression of the data shown by the solid
circles using Eq. (11) for E

(f)
0 <E

(f)
∞ . (b) Open circles cor-

respond to the predictability limits of the uncoupled fast
dynamics as a function of lg E

(f)
0 , while closed circles cor-

respond to those of the coupled fast dynamics.

coupled fast dynamics was ∼5.77. The regression be-
tween the predictability limit T

(f)
P of the coupled fast

dynamics and E
(f)
0 using Eq. (6) yields

T
(f)
P = − c

11.3
lg

E
(f)
0

E
(f)
∞ − E

(f)
0

+ 5.98 ,

if E
(f)
0 < E(f)

∞ , (11)

where c=2.303 and E
(f)
∞ =23.53. The fitting curve us-

ing Eq. (11) is shown in Fig. 11. According to Eq. (11),
T

(f)
P decreased with increasing lg E

(f)
0 at a rate close to

c/λ
(f)
1 and was unbounded as E

(f)
0 approached 0.

Fig. 11. Same as Fig. 9, but with E
(s)
0 = 10−5 in the

coupled Lorenz model.

For the second case (E(s)
0 = 10−5), the average er-

ror growth of the fast dynamics is shown in Fig. 11
for E

(f)
0 of various magnitudes. For E

(f)
0 610−6, the

curves of E(f) overlapped each other and could not
be distinguished. When E

(f)
0 increased to 10−5, the

curve of E(f) slightly departed from the curves for
E

(f)
0 610−6. When E

(f)
0 exceeded 10−5, the curves of

E(f) showed significant separation, and the time before
E(f) reached saturation shortened as E

(f)
0 increased.

As E
(f)
0 approached the saturation value E

(f)
∞ , E(f) did

not increase initially but decayed temporarily for a
short time interval, and then increased slowly to reach
saturation (not shown). Therefore, a predictability
limit >0 remained for large E

(f)
0 , which resulted mainly

from the coupling with the slow dynamics. Figure
12 shows the scatter diagram of T

(f)
P as a function of

lg E
(f)
0 . T

(f)
P was almost constant for E

(f)
0 610−5. For

E
(f)
0 >10−5, T

(f)
P shows a slow, almost linear decrease

with increasing lg E
(f)
0 . The regression between T

(f)
P

and E
(f)
0 using Eq. (6) yields





T
(f)
P = 7.35, if E

(f)
0 6 10−5 ,

T
(f)
P = − c

11.0
lg

E
(f)
0

E
(f)
∞ − E

(f)
0

+ 5.96 ,

if 10−5 < E
(f)
0 < E

(f)
∞

(12)

where c=2.303 and E
(f)
∞ =23.53. The fitting curve us-

ing Eq. (12) is shown in Fig. 12. According to Eq. (12),
if the slow dynamics had a fixed initial error with mag-
nitude equal to 10−5, the predictability of the fast dy-
namics was limited to ∼7.35. For E

(f)
0 >10−5, T

(f)
P de-

creased with lg E
(f)
0 at a rate close to c/λ

(f)
1 .
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Fig. 12. Scatter diagram of the predictability limit of the
fast dynamics T

(f)
P versus lg E

(f)
0 in the coupled Lorenz

model with E
(s)
0 = 10−5. The red and blue lines are the

curves fit by regression of the data shown by the solid cir-
cles using Eq. (12) for E

(f)
0 610−5 and 10−5<E

(f)
0 <E

(f)
∞ ,

respectively.

4. Conclusion

In this study, we determined the limits of pre-
dictability (defined here as the time at which the error
reached 95% of its saturation level) for initial error
of various magnitudes in the Lorenz model (Lorenz,
1963) and the coupled Lorenz model (Boffetta et al.,
1998). Then we analyzed the relationship between the
limit of predictability and initial errors in the Lorenz
model and the coupled Lorenz model. We showed that
a logarithmic function derived from the error growth
model introduced by Lorenz (1982) performed well in
describing the relationship between the limit of pre-
dictability and initial error in these two systems, al-
though the coefficients in the logarithmic function were
not constant across the examined range of initial er-
rors. Compared with the Lorenz model, the coupled
Lorenz model (in which the slow dynamics and the fast
dynamics interact with each other) exhibited a more
complex relationship between the limit of predictabil-
ity and initial error.

In the Lorenz model, Tp decreased approximately
linearly with increasing lg E0 for E0 < 100.2 (where
100.2 corresponds to the error above which the tan-
gent linear approximation of error growth is no longer
valid), while it decreased more quickly than linearly
with increasing lg E0 for E0 > 100.2. The logarithmic
regression between Tp and E0 shows that the maxi-
mal Lyapunov exponent λ1 was relevant to the rate of
change in Tp relative to E0 for E0 < 100.2 but not for
E0 > 100.2. This regression analysis also demonstrates
that TP was unbounded as E0 approached 0. There-
fore, the predictability limit of the Lorenz model can

be extended as long as the initial error can be reduced.
In the coupled Lorenz model, the coupled fast dy-

namics dominated the average error growth during the
initial stage for sufficiently small E

(f)
0 and E

(s)
0 , while

the coupled slow dynamics tended to dominate the av-
erage error growth at large E

(f)
0 and E

(s)
0 . As a result,

the predictability limit T
(f)
P of the coupled fast dy-

namics was significantly extended for E
(f)
0 of various

magnitudes compared with that of the uncoupled fast
dynamics. By contrast, the predictability limit T

(s)
P of

the coupled slow dynamics was significantly decreased
for sufficiently small E

(s)
0 , but it was not evidently dif-

ferent from that of the uncoupled slow dynamics for
relatively large E

(s)
0 . If the magnitudes of E

(f)
0 and

E
(s)
0 both became infinitesimally small, T

(s)
P and T

(f)
P

would be unbounded. However, if the fast dynam-
ics has a fixed E

(f)
0 (> 0), the slow dynamics has an

intrinsic finite limit of predictability that cannot be
extended by reducing the amplitude of E

(s)
0 , and vice

versa.
Our results suggest that the limit of predictabil-

ity of any coupled system that possesses many scales
of time or motion is theoretically unbounded as long
as the initial error can be continuously reduced. In
reality, however, errors with finite magnitude are in-
evitable in the initial conditions of a geophysical sys-
tem because of the limitations of observational instru-
ments, thereby leading to an intrinsic finite limit of
predictability in the system. Nevertheless, further
study is required to examine how the predictability
limit of a geophysical system that possesses many (i.e.,
more than two) scales of motion varies according to
the initial error. It can be expected that additional
scales of time or motion would amplify the complexity
of the relationship between the limit of predictability
and initial error.
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